

Four digit digital countdown timer

for small display

Datasheet

Version: Firmware 1.69-127

StefPro UG (haftungsbeschränkt) & Co. KG Theilenmoorstr. 11

Theilenmoorstr. 11 26345 Bockhorn, Germany

Phone: +49-4452-709175 Web: https://www.stefpro.biz/ E-mail: info@stefpro.biz

Data Sheet Version 1.0.0 - Valid from 10.11.2016.

Table of Contents

Table of Contents	2
Safety	3
Application and function description	4
Function description	4
Functions	4
Application	4
Functional states	
Technical data	5
Construction description	6
Pin assignment Reset	6
VCC	
AVCC	6
AREF	6
GND 01.03	
Q1, Q2 N.C.	
Start	7
Stop	7
TiRe DIS1 to DIS6	7
SEGA, SEGB, SEGC, SEGD, SEGE, SEGF, SEGG, SEGDP	
Buzzer	7
TB	7
Basic circuit	8
Properties of the components	9
7 segment displays	9
Checked displays	g
Calculate the series resistor for one LED Calculate the series resistor for two LED	
Keyboard	
Relais	12
Buzzer properties	12
Button descriptions	13
Menu	13
Using the Countdown Timer - Outside of menu	13
Buzzer setting	13
Auto pause	13
Enable auto pause	13
Set auto pause Exit auto pause	14 14
Display mode setting	14
Info section	14
IC number	14
Firmware version	14
Menu end	15
Attachment	16
7 segment characters	16
Liability, warranty and copyright notice	17
Definitions	17
Liability	17
Warranty	17
Copyright notice	17
Disposal information	18
Impress	18
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

## Safety

### Follow the manual



The IC is only safe in operation if all instructions are read in this datasheet.

## General understanding of safety

By the IC there are no hazard under normal use.

### Intended Use

The IC is designed for driving small to middle displays.

The power should come from a safe transformer (also protected transformer) or a corresponding low voltage power supply for the circuit.

Never use a higher voltage or direct mains voltage!

#### **Concealed Hazards**



### DANGER

following hazards may arise in case of wrong construction of the circuit and wrong handling of IC:

- Mith the direct connection to mains, it's a dangerous voltage on the IC and other components, use a safety transformer!
- 🖳 Reverse polarity and overloading the IC may cause in smoke. This smoke possibly contains toxic substances which must not be inhaled! Ventilate the room.
- 🔼 Reverse polarity or overload of the IC can cause a hot surface on the IC or other component in the circuit.
  - There is a risk of burning when touching.
  - o And flammable materials, for example Paper, can come in fire.
- Spalling of parts on reverse polarity or overloading of the IC.
- Wear during the initial commissioning eye protection.
- he pins of a IC are very pointed and sharp! Therefore, this may cause in sores in case of incorrect handling.

#### Modifications of the example circuit

The successfully built circuit may be damaged. Therefore check as appropriate all housing part and lines for damage. This applies in particular to parts of the directly (for example power cord and power supply) or indirectly come into contact with mains voltage.

Safety -Page 3 of 18

# Application and function description

## **Function description**

The IC SPM110X ... is a digital mono-flop IC with display and buttons for setup. It has a buzzer output for Sound notification that the time has expired and an output for switching a load via relay, transistor, etc..

The IC is a programmed microcontroller of the AVR family by Atmel. The circuit can be used for different purposes, because the target file is free for download, the circuit can be arbitrarily Modified.

This IC has the standard **OnChip display technology** and is suitable for small displays. These can be connected directly to the IC and require only 6 additional resistors.

### **Functions**

- Adjustable digital timer ranges from 10 milliseconds to 99 seconds and 99 milliseconds, 1 second to 99 minutes and 59 seconds or 1 minute to 99 hours and 99 minutes.
  - $\circ~$  The set time is stored in the internal <code>EEPROM</code>
  - · Easy to start, with just one button press
  - Pause function interrupts the countdown
  - o Signal sounds after the time, for a preset time or upto press the button start-stop.
  - o An output for switching loads, relays, solid relays or similar. After inverting transistor BC547C 100mA output load (or similar type).
  - o This IC has the Classic Screen display and the new default view, the differences are seen to www.stefpro.biz as gif video.
- Extra Menu button to change the settings easily or press 1 second the Start/Stop button.
- LED test, at power up all the LEDs turned on for 1 second in order to facilitate the quality control
- It requires no additional IC's without voltage regulator.
- Low power consumption. Requires a power below 100 mW.

### **Application**

- For second exact exposure of PCBs, screen printing templates ...
- · Precisely timed Baking of plastics
- Timed bonding
- Timed flow control

### **Functional states**

The START button is to press for the state start and stop.

With button DOWN in state "Setting Wait" the time can be lowered in seconds. In state "Pause" the countdown can be stopped by this key.

With button UP in state "Setting Wait" the time can be increased in seconds. In state "start†and "pause" this key functions as start / pause button.

The functional states can be seen in Figure 1.

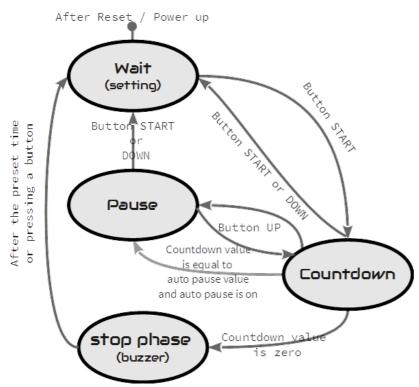
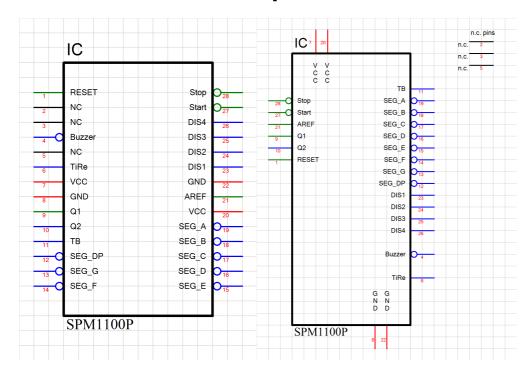



Abbildung 1: State diagram countdown mode

After reset / power up: Entry point after the reset and initialization.

Wait (setting): Setting the time is available, the time displayed on the screen is used as the next count down time. The Pin TiRe has a 0 (GND) at the output. Countdown: In this operation, the time counted down in seconds and the decimal point (/SEGDP) flashes every second. Pin the TiRe has a 1 at the output so VCC potential.


Pause: The countdown is interrupted and the whole display flashes. Pin TiRe has a 0 (GND) at the output.

Stop phase (buzzer): In this state, the TiRe pin is reset to 0 (GND) and the buzzer pin is up for 3 seconds (or set time) or upto pressing the button Start to 0 (GND).

## **Technical data**

- Voltage (VCC): 2.7 V 5 V
- Current: 20 mA (at 5 V)
- Power: approximately 100mW (at 5 volts)
- Number of Pins: 28
- Display Power: directly to the controller is the maximum LED current 40mA
- Clock frequency: 8MHz
- Other properties, refer to the datasheet for Atmel® ATMega8, ATMega88, ATMega168, ATMEGA168P, ATmega328P

# **Construction description**



## Pin assignment

## Reset

Reset input to reset the microcontroller is normally not required. In case of higher EMC requirements a 100nF capacitor should be soldered to ground!

### VCC

Operating voltage (2.7 V to 5 V)

## **AVCC**

Analog operating voltage (VCC ± 0.3 V), a coil should be connected with approximately 10µH between VCC and AVCC.

### AREF

Internal analog reference voltage should be blocked with a 1 nF ceramic capacitor

### GND

Ground

## Q1, Q2

The connecting of the 8MHz quartz is shown in Figure 1

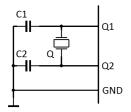



Figure 1: Connection of qaurtz

C1 and C2 are 27pF ceramic capacitors Q is an 8MHz

## N.C.

Do not connect, connect to no other signal!

## Start

This pin starts the countdown timer.

## Stop

This pin stops the countdown timer.

#### **TiRe**

Output for the time relay, it has to reinforce to switch a relay with a transistor (for example BC547C).

### Operating mode State Comment

"Setting Wait" 0 ( GND )
"Countdown" 1 ( VCC )
"Pause" 0 ( GND )
"Stop phase" 0 ( GND )

### DIS1 to DIS6

The respective anode 7-segment display. DIS1 is the tens of minutes and DIS4 the ones digit of seconds. DIS6 simultaneously provides the mass for the button. Should be wired as in the wiring diagram of the basic circuit.

## SEGA, SEGB, SEGC, SEGD, SEGE, SEGF, SEGG, SEGDP

 $Cathode \ terminals \ for \ LED \ segments \ of \ the \ 7-segment \ displays. \ Furthermore \ keys \ are \ connected \ to \ Seg \ B, \ Seg \ C, \ Seg \ D \ .$ 

### Buzzer

On this connector a buzzer can be connected as an acoustic alarm optionial. The plus pole must be connected to VCC pin of the buzzer, the minus pin must connected with  $\hat{a} \in \mathbb{S}$ ummer $\hat{a}$ 

### ТВ

Tap to verify the accuracy of the time base, max. 1.0001 kHz, the larger is the different from the 1 kHz the less accurate the IC. Production pin. You may adjust quartz capacitors.

# **Basic circuit**

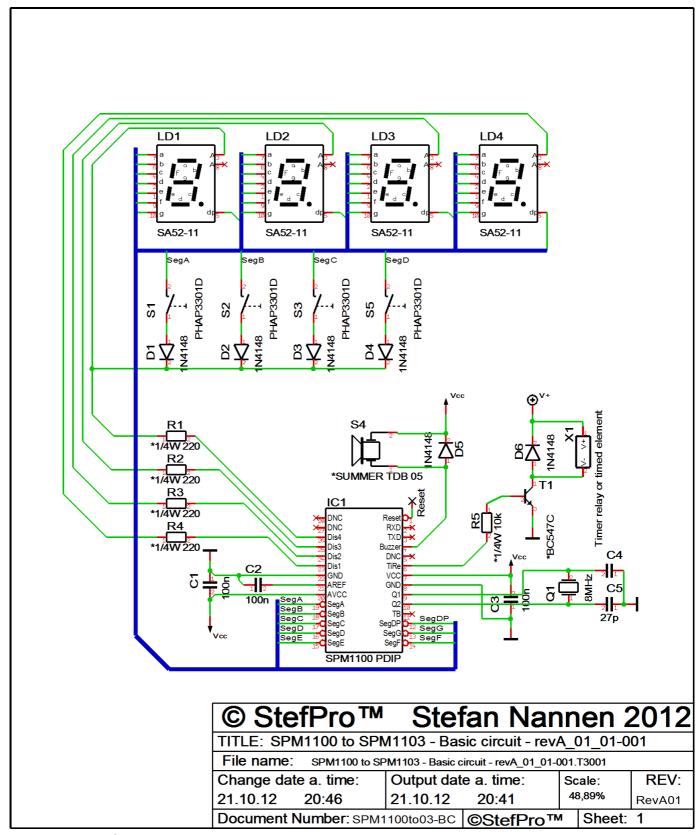
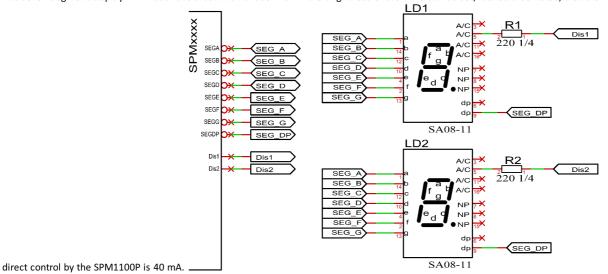




Figure 2: Basic circuit of SPM1100P

# Properties of the components

## 7 segment displays

The seven-segment display LD1 must have a common anode. Via R1 the brightness of the LEDs can be set, it should be noted, that the maximum current with



## **Checked displays**

Manufactor no Hersteller-Nr.	Manufactor - Hersteller	Color - Farbe	Peakt current – Pulsstrom	Brightness – Helligkeit
0.39 in - 10 mm				
SA 39-11 SRWA	KINGBRIGHT	Red - Rot	32mA	<b>✓</b>
SA 39-11 GN	KINGBRIGHT	Green - Grün	28mA	_
0.52 in - 13,3 mm				
SA52-11SRWA	KINGBRIGHT	Red - Rot	32mA	<b>✓</b>
SA52-11LSRWA	KINGBRIGHT	Red - Rot	32mA	(Minimal brighter - Minimal heller)
SA52-11EWA	KINGBRIGHT	Red - Rot	30mA	_
SA52-11YWA	KINGBRIGHT	Yellow - Gelb	29mA	Х
SA52-11LYWA	KINGBRIGHT	Yellow - Gelb	29mA	X
SA52-11GWA	KINGBRIGHT	Green - Grün	28mA	_
SA52-11LGWA	KINGBRIGHT	Green - Grün	28mA	_
SA52-11QBWA-D	KINGBRIGHT	Blue - Blau	10mA	<b>✓</b>
LTS-546AP	Lite-On	Red - Rot	~30mA	Х
TDSR5160	Vishay Semiconductors	Red - Rot	~30mA	Х
TDSG5150	Vishay Semiconductors	Green - Grün	28mA	✓
0.56 in - 14,2 mm				
SA 56-11 EWA	KINGBRIGHT	Red - Rot	32mA	X
SA 56-11 GN	KINGBRIGHT	Green - Grün	28mA	Х
0.8 in - 20,32 mm				
SA08-11SRWA	KINGBRIGHT	Red - Rot	32mA	<b>✓</b>
SA08-11EWA	KINGBRIGHT	Red - Rot		Test is still pending - Test steht noch aus
SA08-11YWA	KINGBRIGHT	Yellow - Gelb	29mA	<b>✓</b>
SA08-11GWA	KINGBRIGHT	Green - Grün	28mA	Х
SA08-11PBWA	KINGBRIGHT	Blue - Blau	10mA	_
HDSP-8601	Agilent	Green - Grün	28mA	_
2.3 in – 56,9 mm				
SA23-12SRWA	KINGBRIGHT	Red - Rot	-	🗶 (impossible - unmöglich)
SA23-12EWA	KINGBRIGHT	Red - Rot	-	🗶 (impossible - unmöglich)
SA23-12YWA	KINGBRIGHT	Yellow - Gelb	-	🗶 (impossible - unmöglich)
SA23-12GWA	KINGBRIGHT	Green - Grün	-	🗶 (impossible - unmöglich)
4.0 in – 100 mm				
SA40-19SRWA	KINGBRIGHT	Red - Rot	-	🗶 (impossible - unmöglich)
SA40-19EWA	KINGBRIGHT	Red - Rot	-	✗ (impossible - unmöglich)

M49119XWAo Hersteller-Nr.			Peakt current - Pulsstrom	
SA40-19GWA	KINGBRIGHT	Green - Grün	-	★ (impossible - unmöglich)

- 🗸 Works fine Funktioniert perfekt
- — Works but not fine Funktioniert, aber nicht zu empfehlen
- X Doesn't work Funktioniert nicht
- X Not tested, would not work directly Nicht getestet, da nicht direkt möglich.

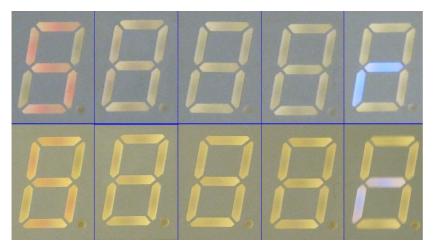



Figure 3: Differences of display readability brightness level 1

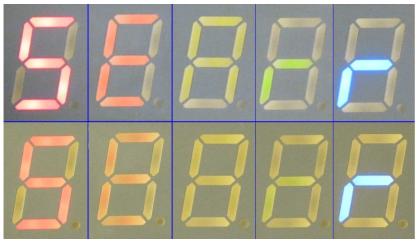



Figure 4: Differences of display readability brightness level 25

The displays in figure 3 and 4 are from left to right:

- SA52-11SRWA
- SA52-11EWA
- SA52-11YWA
- SA52-11GWA
- SA52-11QBWA-D



 $\label{thm:prop:section} \textit{Figure 5: SA08-11SRWA left without and right with contrast pane with back light.}$ 

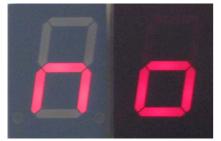
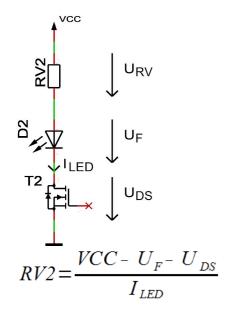



Figure 6: SA08-11SRWA left without and right with contrast pane without back light.

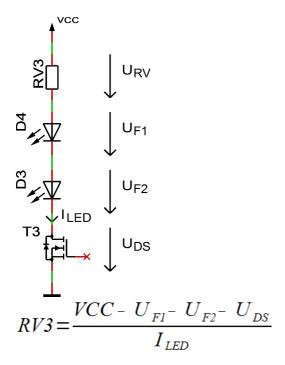
Below with and above without back light.

Because the displays are multiplexed (only one LED is lights at the same time for a maximum of 6 microseconds) to minimize component count and power consumption, not all 7-segment displays are usable.


Also note, that the displays which can work with 10 mA constant current, not implicitly work with 10 mA pulsed current. All displays have been limited with a 100 ohm resistor.

The brightness of the display is designed for the brightness conditions in a living room or laboratory. Since the circuit is optimized for minimum components and power consumption, the readability is limited with direct irradiation by spotlight or sunlight without a contrast panel very limited and with better.

It is recommended to place a contrast panel in front of the display, see figure 6 and 5.

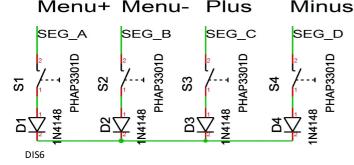

Note: The menu is always displayed with 100% brightness.

## Calculate the series resistor for one LED



- UDS ≈ 0
- ILED < 35 mA

Calculate the series resistor for two LED

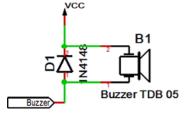



- UDS ≈ 0
- ILED < 35 mA

## Keyboard

The keyboard consists of three to four buttons. It is expressly recommended to use digital compatible switches. The diodes D1 to D4 are for blocking display faults when pressing 2 and more keys.

The remote control of the controler is simply possible by parallel adding or replacing the button with NPN transistors.




## Relais

In the basic circuit is shown how a relay or something like that can be connected. T1 used R5 as a series resistor, T1 is operated as an amplifier and also as an inverter. For T1 and R5, other components may be used. A direct connection of a coil or a load with more than 40 mA is not recommended direct with the SPM1100 - SPM1102. D6 is idle, the diode when operating with coils. If the controller frequently triggers a reset or has other mistakes, instead of a transistor a optocoupler should be used.

## **Buzzer properties**

The buzzer B1 must be self-producing and have a minimum voltage of VCC. Does the buzzer have not VCC, a series resistor have to be installed. The buzzer may further maximum of 40mA directly from the IC SPM1100P. The plus pole of the buzzer have to be applied to VCC and the minus pin of the buzzer have to connected to the IC. D1 is the idle diode when operating with coils.



# **Button descriptions**

Menu+ Opens the menu, next setting

Menu- Opens the menu, previus setting

Plus Function key, in general + or on

Minus Function key, in general - or off

Which button assignment to which pin, please refer to the example diagram.

## Menu

Level 1 Level 2

Using the Countdown Timer - Outside of menu↓

Buzzer setting↓

Auto pause → Set auto pause → Exit auto pause ひ

Display mode setting↓
Info section↓
IC number↓
Firmware version↓

⇒: Next step in main menu.

→: Next step in sub menu.

 $\circlearrowright :$  The submenu starts again.

The countdown timer is operated by 3 buttons.

## Using the Countdown Timer - Outside of menu



- S1 is the start and stop button. If the countdown timer in the pause mode, the timer can be restart with this button.
- S3 is the plus key, it increments the time. If the countdown timer is running, this button paused the countdown.
- S4 is the minus key, it decrements the time. If the countdown timer is running, this button stops the countdown.

These buttons are available only when the menu is not open, otherwise the keys are used by the menu.

## **Buzzer setting**

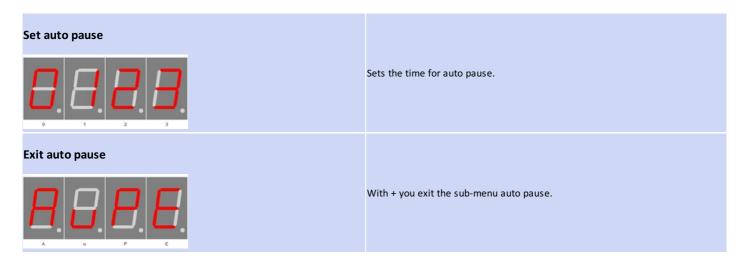


With the button plus and minus the buzzer settings can be select. 0: No tone

- 1: 3 seconds after the counter ends
- 2:9 seconds after the counter ends
- 3: infinitely until keystroke after the counter ends

## Auto pause




With + you enter the sub-menu auto pause.

Auto pause

### **Enable auto pause**



Enables the auto pause function.



## Display mode setting

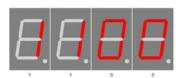


Display Classic



Display Standard

with key plus and minus display mode setting Select


- C: Classic, buzzer beeps continuously
- S: Standard, the buzzer beeps with interruptions

## Info section



This indicates the start the information area

## **IC** number



Chip number

IC / device type

## **Firmware version**

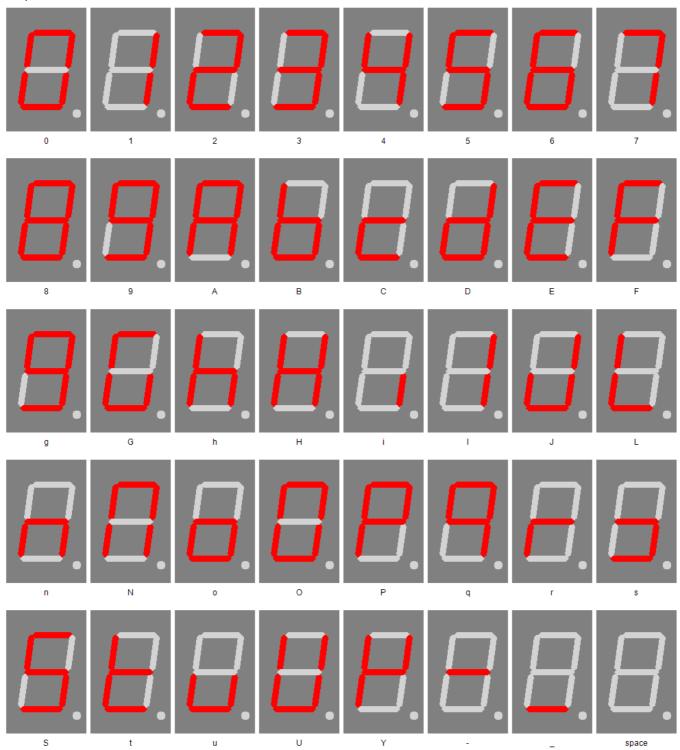


Firmware version

Firmware version

Example, it might be something else at this point.

## Menu end




End of the menu, hide automatically after 2 seconds.

# Attachment

## 7 segment characters

The symbolism of each character:



# Liability, warranty and copyright notice

## **Definitions**

- "Programmed IC": IC which was developed by StefPro and can only used with a minimum basic circuit.
- "Manufacturer of the whole device": The manufacturer of the whole device, the natural or legal person is mounted a device which can be made to function without special knowledge. E.G. Simple connection to the network via a euro, safety plug or by connecting to a power supply.

## Liability

- Although the information contained in this document has been checked very carefully for accuracy and completeness, for errors and omissions can not be held liable. StefPro reserves the right to any time change any portion of the described hardware and software features.
- StefPro delivers only the "programmed IC", a basic circuit and possibly an example circuit, but these are not tested for CE and EMC. The "Manufacturer of the whole device" requires the valid VDE, CE and EMC is comply with regulations.
- There is no liability for damages incurred directly by or in the application of the "programmed IC", as well as for damage caused by chemical or
  electrochemical effects of water or generally from abnormal environmental conditions.
- "Programmed IC's" by StefPro may not be used in critical equipment. At disregard exclusively the responsibility of "Manufacturer of the whole device."

#### These include:

- medical devices for implanting or life obtained.
- Critical equipment for space, aerospace and traffic.
- Other important life components or systems, where an error is fatal.
- All developed with a "programmed IC" by StefPro modules and devices must be the responsibility of the "Manufacturer of the whole device" sufficiently
  tested to detect any defects.

## Warranty

- StefPro warranty only for the programmed IC and their firmware. The warranty is exclusively limited for the replacement of the IC within the warranty period for obvious defects in the hardware, and programming error.
- Warranty does not extend the warranty period or starts a new period again.
- Additional or deviating claims are excluded, especially claims for damages arising out of the product for damage. This will not affect claims based on
  inalienable rules under the product liability law.

## **Copyright notice**

The circuit and the firmware on the programmed IC's by StefPro is Copyrighted. Unauthorized reproduction or distribution of programmed IC's with this program or any portion of it. This is pursued both criminal and civil law, and may result in severe penalties and compensation for damages.

# Disposal information

Do not dispose devices in household garbage!

This modules or devices comply with the EU directive on electronic and electrical equipment (WEEE regulation) and therefore may not be disposed of with household waste. Dispose of the device over your local collection center for electronic equipment!



WEEE-Reg.-Nr.:

DE 58929072 (StefPro UG (haftungsbeschränkt) & Co. KG)

DE 78089358 ( StefPro Einzellunternehmen bis zum 01.01.2015 )

## **Impress**

StefPro™ UG (haftungsbeschränkt) & Co. KG
- Softwareentwicklung für Prozessoren

Dipl. Ing. (FH) Stefan Nannen

Theilenmoorstr. 11

26345 Bockhorn – Germany

Phone: +49-4452-709175

Web:<u>http://www.stefpro.biz/</u>

E-mail: info@stefpro.biz